If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-13.89b^2+19b+6.5=0
a = -13.89; b = 19; c = +6.5;
Δ = b2-4ac
Δ = 192-4·(-13.89)·6.5
Δ = 722.14
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{722.14}}{2*-13.89}=\frac{-19-\sqrt{722.14}}{-27.78} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{722.14}}{2*-13.89}=\frac{-19+\sqrt{722.14}}{-27.78} $
| (4)/(9)x+2=(7)/(3)-(5)/(9)x+(7)/(3) | | 3(x-3)=6(x+4) | | 14=y*7 | | 1.5x+1x=x | | -5y=-10y−5 | | 5x+1=-4+6x | | 3n+4=8n-9 | | 7(r-8)=3(r+4) | | 3y+6y+(2y-5)=180 | | -(4)+y/8+23=36 | | 2*y=12 | | 3y+6y+2y-5=180 | | 7+(-3x^2)x=0 | | 7r+2=37 | | (5n+1)=(5) | | -7(4h+2)=5(2h+1) | | -(27)+3z+51=42 | | 3/2x-2=x+8 | | -(80)+0.4b=92 | | d/4=15 | | 24x^2+22x-65=0 | | x/16=20/80 | | -9.5a+4a=-23.5 | | 12n-n=5-4n | | 3(p-2)=2(p+7) | | x=(3x-x) | | 18.5=9+7.5(b-4) | | y/3+13=15 | | 4(×-1)=2(6-2x | | 26+x=26+15 | | 6=12x^2-36x+10 | | a+3a+4=20 |